
The deep learning journey

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

2

1. The beginning of the story

 Just like birds inspired us to fly, nature has inspired countless more inventions

 This is the logic that sparked artificial neural networks (ANNs)

 An ANN is a Machine Learning model inspired by the networks of biological neurons

found in our brains

 ANNs are ideal for tackling large and highly complex Machine Learning tasks

 Answer a variety of different questions (e.g., ChatGPT)

 Generate convincing images in different styles (e.g., Stable diffusion)

 Helping us focus on the applications rather than coding for the functions (e.g. Copilot)

 Recommending the best videos to watch to users every day (e.g., YouTube)

 Learning to beat the world champion in the game of Go (DeepMind’s AlphaGo)

3

The beginning of the story

 ANNs have been around for quite a while: they were first introduced back in

1943 by the neurophysiologist and mathematician

 Neural networks became popular in the 1980s. Then along came SVMs, Random Forests in

the 1990s, and Neural Networks took a back seat

 Re-emerged around 2010 as Deep Learning

1. There is now a huge quantity of data available to train neural networks, and ANNs

frequently outperform other ML techniques on very large and complex problems

2. The tremendous increase in computing power since the 1990s now makes it possible to

train large neural networks in a reasonable amount of time

3. Much of the credit goes to three pioneers and their students: Yann LeCun, Georey Hinton

and Yoshua Bengio, who received the 2019 ACM Turing Award for their work in Neural

Networks

4

The Perceptron

 The threshold logic unit (TLU) computes a weighted sum of its inputs

σ𝑗=1
𝑝

𝑤𝑘𝑗𝑋𝑗, then applies a step (Activation) function to that sum and output

ℎ𝑒𝑎𝑣𝑖𝑑𝑖𝑑𝑒(𝑧) = ቊ
0 𝑖𝑓 𝑧 < 0
1 𝑖𝑓 𝑧 ≥ 0

5

 It is an artificial neuron. A single

TLU can be used for simple linear

binary classification and if the

result exceeds a threshold, it

outputs positive class

https://dafriedman97.github.io/mlbook/content/c3/s1/perceptron.html

The Perceptron

 A Perceptron is composed of a single layer of TLUs, with each TLU connected

to all the inputs

6

 When all neuron in a layer

are connected to every

neuron in the previous layer,

it is call dense layer

 The input neuron output

whatever input they are fed

and form the input layer

 An extra bias neuron is

added which outputs 1 all

the time

Neural Network (The Multilayer Perceptron)

 The four features 𝑋1, … , 𝑋4 make up the units in the input layer

 Each of the inputs from the input layer feeds into each of the 𝐾 (5 here) hidden units

𝑓 𝑋 = 𝛽0 +

𝑘=1

𝐾

𝛽𝑘𝐴𝑘 = 𝛽0 +

𝑘=1

𝐾

𝛽𝑘𝑔 (𝑤𝑘0 +

𝑗=1

𝑝

𝑤𝑘𝑗𝑋𝑗)

7

Lower layer Higher (top) layer

Details

 𝑔(𝑧) is called the activation function

 Activation functions in hidden layers are typically nonlinear. Otherwise, the model

collapses into a linear model

 𝐴𝑘 are the activations which are different transformations of original features

 Fitting a neural network requires estimating the unknown parameters (𝑤 and 𝛽)

 For a quantitative response, typically squared-error loss is used

𝑖=1

𝑛

(𝑦𝑖 − 𝑓(𝑥𝑖))
2

 For qualitative response, the cross-entropy (negative log-likelihood) is used:

−

𝑖=1

𝑛

𝑦𝑖 log(𝑓 𝑥𝑖) + (1 − 𝑦𝑖) log(1 − 𝑓 𝑥𝑖)

8

https://dafriedman97.github.io/mlbook/content/c7/concept.html

Details

 The sigmoid activation function was favored in the early age

𝑔 𝑧 =
1

1 + 𝑒−𝑧

 The preferred choice in modern neural networks is the ReLU (rectified linear

unit) activation function, which takes the form

𝑔 𝑧 = (𝑧)+= ቊ
0 𝑖𝑓 𝑧 < 0
𝑧 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

9

Multilayer Neural Networks

 Modern neural networks typically have more hidden layers and often many

units per layer. In theory, a single hidden layer with a large number of units has

the ability to approximate most functions (Universal approximation theorem)

 However, the learning task of discovering a good solution is made much easier

with multiple layers, each of modest size –This is why deep!

 When an ANN contains a deep stack of hidden layers, it is called a deep neural

network (DNN). The field of Deep Learning studies DNNs

 However, many people talk about Deep Learning whenever neural networks are involved

(even shallow ones)

10

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Example: MNIST Digits

 Handwritten digits 28 × 28 grayscale images with 60𝐾 train and 10𝐾 test

 Features are the 784 pixel grayscale values ∈ [0, 255]

 Labels are the digit class 0 − 9 with one-hot encoding

 Goal: build a classifier to predict the image class

 We build a network with two hidden layers which have 256 units at the first layer, 128

units at the second layer, and 10 units at the output layer. Along with intercepts (called

biases), there are 235,146 parameters (referred to as weights)

11

http://karpathy.github.io/2022/03/14/lecun1989/

Multilayer Neural Networks

 𝐴𝑘
(1)

= 𝑔 𝑤𝑘0
1
+ σ𝑗=1

𝑝
𝑤𝑘𝑗

1
𝑋𝑗

for 𝑘 = 1,… , 𝐾1

 𝐴𝑙
(2)

= 𝑔 (𝑤𝑙0
(2)

+ σ𝑘=1
𝐾1 𝑤𝑙𝑘

(2)
𝐴𝑘
(1)
)

for 𝑙 = 1,… , 𝐾2
 The 𝑊1,𝑊2 and 𝐵 has 785 ×
256, 257 × 128 and 129 × 10
elements, respectively

12

Multilayer Neural Networks

 Let 𝑍𝑚 = 𝛽𝑚 + σ𝑙=1
𝐾2 𝛽𝑚𝑙𝐴𝑙

(2)
, 𝑚 = 0,1,… , 9 be 10 linear combinations of

activations at second layer

 Output activation function encodes the softmax function (This ensures that the 10 numbers

behave like probabilities (non-negative and sum to one))

𝑓𝑚 𝑋 = Pr 𝑌 = 𝑚 𝑋 =
𝑒𝑧𝑚

σ𝑙=0
9 𝑒𝑧𝑙

 We fit the model by minimizing the negative multinomial log-likelihood (or

cross-entropy, just like in multinomial logistic regression):

−

𝑖=1

𝑛

𝑚=0

9

𝑦𝑖𝑚 log(𝑓𝑚(𝑥𝑖))

 𝑦𝑖𝑚 is 1 if the true class for observation 𝑖 is 𝑚, else 0 – i.e., one-hot encoded

13

https://www.youtube.com/watch?v=6ArSys5qHAU

Fitting a Neural Network

 This problem is difficult because the objective is nonconvex. Let us go back to

MSE loss. For a neural network with one hidden layer, we have

min
{𝑤𝑘}1

𝐾,𝛽

1

2

𝑖=1

𝑛

(𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑓 𝑥𝑖 = 𝛽0 +

𝑘=1

𝐾

𝛽𝑘𝑔 (𝑤𝑘0 +

𝑗=1

𝑝

𝑤𝑘𝑗𝑥𝑖𝑗)

 Suppose we represent all the parameters in one long vector 𝜃, 𝑅 𝜃 =
1

2
σ𝑖=1
𝑛 (𝑦𝑖 − 𝑓𝜃(𝑥𝑖))

2

 Slow learning and regularization are the keys to successful training

14

Fitting a Neural Network

1. Start with a guess 𝜃0 for all the parameters in 𝜃, and set 𝑡 = 0

2. Iterate until the objective fails to decrease:

(a) Find a vector 𝛿 that reflects a small change in 𝜃, such that 𝜃𝑡+1 = 𝜃𝑡 + 𝛿 reduces the

objective; i.e. such that 𝑅(𝜃𝑡+1) < 𝑅(𝜃𝑡)

(b) Set 𝑡 ← 𝑡 + 1

15

2. Slow learning - Gradient descent

 How to find a direction 𝛿 that points downhill? We compute the gradient vector

𝛻𝑅 𝜃𝑡 = ቤ
𝜕𝑅 𝜃

𝜕𝜃
𝜃=𝜃𝑡

 The gradient points uphill, so our update is 𝛿 = −𝜂𝛻𝑅 𝜃𝑡

𝜃𝑡+1 ← 𝜃𝑡 − 𝜂𝛻𝑅 𝜃𝑡

Where 𝜂 is the learning rate which is typically small

 𝑅 𝜃 = σ𝑖=1
𝑛 𝑅𝑖(𝜃) is sum of gradients

 For a small enough value of the learning rate 𝜂, this step will decrease the objective

 If the gradient vector is zero, then we may have arrived at a minimum of the objective

16

Gradients and Backpropagation

 𝑅𝑖 𝜃 =
1

2
σ𝑖=1
𝑛 𝑦𝑖 − (𝛽0 +σ𝑘=1

𝐾 𝛽𝑘𝑔 𝑤𝑘0 +σ𝑗=1
𝑝

𝑤𝑘𝑗𝑥𝑖𝑗)
2

 Let 𝑧𝑖𝑘 = 𝑤𝑘0 + σ𝑗=1
𝑝

𝑤𝑘𝑗𝑥𝑖𝑗

 Backpropagation uses the chain rule for differentiation:
𝜕𝑅𝑖(𝜃)

𝜕𝛽𝑘
=
𝜕𝑅𝑖(𝜃)

𝜕𝑓𝜃(𝑥𝑖)
∙
𝜕𝑓𝜃 𝑥𝑖
𝜕𝛽𝑘

= −(𝑦𝑖 − 𝑓(𝑥𝑖)) ∙ 𝑔(𝑧𝑖𝑘)

𝜕𝑅𝑖(𝜃)

𝜕𝑤𝑘𝑗
=
𝜕𝑅𝑖(𝜃)

𝜕𝑓𝜃(𝑥𝑖)
∙
𝜕𝑓𝜃 𝑥𝑖
𝜕𝑔(𝑧𝑖𝑘)

∙
𝜕𝑔(𝑧𝑖𝑘)

𝜕𝑧𝑖𝑘
∙
𝜕𝑧𝑖𝑘
𝜕𝑤𝑘𝑗

= −(𝑦𝑖 − 𝑓(𝑥𝑖)) ∙ 𝛽𝑘 ∙ 𝑔
′(𝑧𝑖𝑘) ∙ 𝑥𝑖𝑗

 Notice that both these expressions contain the residual. So the act of differentiation assigns a

fraction of the residual to each of the parameters via the chain rule

 In just two passes through the network (one forward, one backward), it can find out how

each connection weight and each bias term should be tweaked in order to reduce the error

17

https://cs231n.github.io/optimization-2/
https://dafriedman97.github.io/mlbook/content/c7/concept.html#back-propagation

Gradients and Backpropagation

 The forward pass computes the output of all the neurons in current layer and

send it to next layer. It is exactly like making predictions, except all

intermediate results are preserved since they are needed for the backward pass

 The backward pass measures how much of output error contributions came

from each connection in the layer below, again using the chain rule, working

backward until the algorithm reaches the input layer

 The algorithm performs a Gradient Descent step to tweak all the connection

weights in the network, using the error gradients it just computed

18

Gradient descent

 Some notice

 Determine the step 𝜂 which is call the learning rate is important

 It is important to ensure that features have similar scale

19

Gradient descent

 If the Gradient Descent uses the whole training set to compute the gradients at

every step σ𝑖=1
𝑛 𝑅𝑖(𝜃), it is very slow

 Stochastic Gradient Descent (SGD) picks a random instance in the training set at

every step and computes the gradients based only on it. Due to its stochastic nature,

it is much less regular than Gradient Descent

20

 Mini-batch Gradient Descent or batch

SGD instead computes the gradients

on small random sets of instances

 We will usually shuffle the dataset

when training

https://datascience.stackexchange.com/questions/24511/why-should-the-data-be-shuffled-for-machine-learning-tasks

Gradient descent

 Randomness is good to escape from local optima but bad because it

means that the algorithm can never settle at the minimum

 One solution to this dilemma is to reduce the learning rate gradually

 The steps start out large, then get smaller and smaller, allowing the algorithm to

settle at the global minimum. The function that determines the learning rate at each

iteration is called the learning rate schedule

21

Learning rate scheduling

 Rather than constant, finding a good learning rate is very important

 Power/exponential scheduling: Set the learning rate to a function of the iteration number 𝑡.
For instance,𝜂 𝑡 = 𝜂0 ∙ 0.1

𝑡/𝑠, 𝑠 is the number of iterations to decay

 Piecewise constant scheduling: Use a constant learning rate for a number of iterations, then

a lower learning rate for another number of iterations…

22

 Performance scheduling: Measure the

validation error every 𝑁 steps, and

reduce the learning rate by a factor of

𝐶 when the error stops dropping

 1cycle scheduling

https://www.deepspeed.ai/tutorials/one-cycle/

Gradient descent

 Training a very large deep neural network can be painfully slow. Many faster

optimizers are proposed based on the idea of Momentum

 𝜃𝑖
𝑡+1 = 𝜃𝑖

𝑡 + 𝑣𝑖
𝑡 , where 𝑣𝑖

𝑡= 𝛽𝑣𝑖
𝑡−1 − 𝜂𝛻𝑅 𝜃𝑖

𝑡 , 𝑣𝑖
0 = 0 and 𝛽 (set to 0.9) is momentum

 More optimizer see here

23
https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML2020/Optimization.pdf

https://distill.pub/2017/momentum
https://github.com/jettify/pytorch-optimizer
https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML2020/Optimization.pdf

Back to the example

 The MNIST problem

 Slow learning. the model is fit using gradient descent. The fitting process is then stopped

when overfitting is detected (With early stopping)

 Stochastic gradient descent. Use a small minibatch drawn at random at each step. E.g. for

MNIST data, we use minibatches of 128 observations

24

 20% of the 60,000 training observations

were used as a validation set

 An epoch is a count of iterations and

amounts to the number of minibatch

updates such that 𝑛 samples in total have

been processed; i.e. 48𝐾/128 = 375 steps

per epoch for MNIST

 Playground

https://www.deeplearning.ai/ai-notes/optimization/index.html

3. Regularization

 A model with millions of parameters would severely risk overfitting the

training set, especially if there are not enough training instances or if they are

too noisy

 Regularization

𝑅 𝜃; λ = −

𝑖=1

𝑛

𝑚=0

9

𝑦𝑖𝑚 log(𝑓𝑚(𝑥𝑖)) + λ

𝑗

𝜃𝑗
2

 If you want a sparse model (with many weights equal to 0), you can use 𝑙1

25

Dropout Learning

 Similar to randomly omitting variables when growing trees in random forests

 At each SGD step, randomly remove units with probability 𝛷, the surviving units stand in

and their output weights are scaled up by a factor Τ1 (1 − 𝛷) to compensate during training

or we can multiply each input connection weight by the (1 – 𝛷) after training

 We do not perform dropout at the output layer or after the training is done, neurons don’t

get dropped anymore. In practice, you can usually apply dropout only to the neurons in the

top one to three layers (excluding the output layer)

26

Dropout Learning

 Neurons trained with dropout have to be as useful as possible on their own.

They also cannot rely on just a few input neurons; they must pay attention to

each of their input neurons. They end up being less sensitive to slight changes

in the inputs so you get a more robust network that generalizes better

 If you observe that the model is overfitting, you can increase the dropout rate. Conversely,

you should try decreasing the dropout rate if the model underfits the training set

 Since each neuron can be either present or absent, there are a total of 2𝑛 possible networks

after 𝑛 steps, The resulting neural network can be seen as an averaging ensemble of part of

these smaller neural networks

27

Early stopping

 Another way to regularize iterative learning algorithms such as Gradient

Descent is to stop training as soon as the validation error reaches a minimum

 With early stopping, you just stop training as soon as the validation error reaches the

minimum. It is such a simple and efficient regularization technique that Geoffrey Hinton

called it a “beautiful free lunch.”

28

4. The Vanishing/Exploding Gradients Problems

 You may be faced with vanishing/exploding gradients. This is when the

gradients grow smaller and smaller or larger and larger when flowing backward

through the DNN during training

 The cumulative errors that occur in sequential transmission over a noisy channel

𝑦 = 𝑓4 𝑓3 𝑓2 𝑓1 𝑥

 To adjust the parameters of each function in the chain based on the error recorded on the

output of 𝑓4 (the loss of the model). To adjust 𝑓1, you’ll need to percolate error information

through 𝑓2, 𝑓3, and 𝑓4. However, each successive function in the chain introduces some

amount of noise. If your function chain is too deep, this noise starts overwhelming gradient

information, and backpropagation stops working!

29

The Vanishing/Exploding Gradients Problems

 The combination of logistic sigmoid activation function and the weight

initialization (i.e., a normal distribution with a mean of 0 and a standard

deviation of 1) may cause the problem

30

 With this activation function and this

initialization scheme, the variance of the

outputs of each layer is much greater than

the variance of its inputs. Going forward in

the network, the variance keeps increasing

after each layer until the activation function

saturates

 The function saturates at 0 or 1, with a

derivative extremely close to 0!

The Vanishing/Exploding Gradients Problems

 We need the variance of the outputs of each layer to be equal to the variance of

its inputs, and we need the gradients to have equal variance before and after

flowing through a layer in the reverse direction

 Let 𝑓𝑎𝑛𝑎𝑣𝑔 =
𝑓𝑎𝑛𝑖𝑛+𝑓𝑎𝑛𝑜𝑢𝑡

2

 Initialize weight with a normal distribution (mean 0, variance 𝜎2) or uniform distribution

between – 𝑟 and 𝑟, 𝑟 = 3𝜎2

 Playground

31

Initialization Activation functions 𝜎2

Glorot (Xavier) None, tanh, sigmoid, softmax 1/𝑓𝑎𝑛𝑎𝑣𝑔

He ReLU and its variants 2/𝑓𝑎𝑛𝑖𝑛

LeCun SELU 1/𝑓𝑎𝑛𝑖𝑛

𝑓𝑎𝑛𝑖𝑛

𝑓𝑎𝑛𝑜𝑢𝑡

https://www.deeplearning.ai/ai-notes/initialization/index.html

Nonsaturating Activation Functions

 ReLU activation function does not saturate for positive values but

 It suffers from a problem known as the dying ReLUs: during training, some neurons stop

outputting anything other than 0 and Gradient Descent does not affect it anymore because

the gradient of the ReLU function is zero when its input is negative

 You may want to use a variant of the ReLU function, such as the leaky ReLU or

exponential linear unit (ELU)

32

max(𝛼𝑧, 𝑧)
ቊ
𝛼 𝑒𝑧 − 1 𝑖𝑓 𝑧 < 0
𝑧 𝑖𝑓 𝑧 ≥ 0

Batch normalization

 Adding an operation before or after the activation function of each hidden layer

 This operation zero-centers and normalizes each input, then scales and shifts the result

using two new parameter vectors per layer: one for scaling, the other for shifting

 The operation lets the model learn the optimal scale and mean of each of the layer’s inputs

using the current mini-batch (𝛾 and 𝛽 are learned through regular backpropagation)

𝜇𝐵 =
1

𝑚𝐵

𝑖=1

𝑚𝐵

𝑥𝑖

𝜎𝐵
2 =

1

𝑚𝐵

𝑖=1

𝑚𝐵

(𝑥𝑖 − 𝜇𝐵)
2

ො𝑥𝑖 =
𝑥𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜀

𝑧𝑖 = 𝛾 ∙ ො𝑥𝑖 + β

33

𝑥𝑖

𝑧𝑖

BN Layer

Batch normalization

 Batch Normalization estimate μ and σ for testing (to replace 𝜇𝐵 and 𝜎𝐵) during

training by using a moving average of the layer’s input means and standard

deviations (Totally four parameters per layer if we consider 𝛾 and β)

 μ = μ ×momentum + ො𝜇(1−momentum)

 Batch Normalization significantly speeds up the training and avoids the use of

regularization

 The main effect of batch normalization appears to be that it helps with gradient propagation

by feature normalization and thus allows for deeper networks

 However, it adds some complexity and there is a runtime penalty: the neural network

makes slower predictions due to the extra computations required at each layer. Fortunately,

it’s often possible to fuse the BN layer with the previous layer after training

34

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/normalization_v4.pdf
https://nenadmarkus.com/p/fusing-batchnorm-and-conv/

Why deep?

 If you want to make a complex system simpler, there’s a recipe you can apply:

just structure it into modules, organize the modules into a hierarchy, and start

reusing the same modules in multiple places as appropriate

1. If you’re a software engineer, you’re already keenly familiar with these principles: an

effective codebase is one that is modular, hierarchical, and where you don’t re-implement

the same thing twice but instead rely on reusable classes and functions

2. Deep learning itself is simply the application of this recipe to continuous optimization via

gradient descent: you take a classic optimization technique (gradient descent over a

continuous function space), and you structure the search space into modules (layers),

organized into a deep hierarchy, where you reuse whatever you can

3. Deeper hierarchies are intrinsically good because they encourage feature reuse

35

Why deep?

 For complex problems, deep networks have a much higher parameter

efficiency than shallow ones

 Model complex functions using exponentially fewer neurons than shallow nets

 Real-world data is often structured in such a hierarchical way, and deep neural

networks take advantage of this fact

1. Lower hidden layers model low-level structures (e.g., line segments of various shapes

and orientations), intermediate hidden layers combine these structures to model

intermediate-level structures (e.g., squares, circles), and the highest hidden layers and the

output layer combine these intermediate structures to model high-level structures (e.g.,

faces)

2. It can also generalize better by keeping the weight of lower layer and perform transfer

learning

36

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow,

3rd Edition Chapter10~11

[2] An Introduction to Statistical Learning with Applications in R. Second

Edition Chapter 10

37

https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://www.statlearning.com/

Appendix

38

Resources

 Deep learning concepts

 https://leemeng.tw/10-key-takeaways-from-ai-for-everyone-course.html

 https://github.com/leemengtw/deep-learning-resources

 https://udlbook.github.io/udlbook/

 https://d2l.ai/index.html

 https://distill.pub/

 https://aman.ai/primers/ai/

 https://explained.ai/

 https://www.kaggle.com/learn-guide/tensorflow

 Hyperparameter tuning:

 Empirical guidelines

 Deep dive guidelines

39

https://leemeng.tw/10-key-takeaways-from-ai-for-everyone-course.html
https://github.com/leemengtw/deep-learning-resources
https://udlbook.github.io/udlbook/
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://aman.ai/primers/ai/
https://explained.ai/
https://www.kaggle.com/learn-guide/tensorflow
https://fullstackdeeplearning.com/spring2021/lecture-7/
https://github.com/google-research/tuning_playbook

Resources

 Playground

 https://www.deeplearning.ai/ai-notes/optimization/index.html

 https://www.deeplearning.ai/ai-notes/initialization/index.html

 http://playground.tensorflow.org/

 Deep learning libraries

 https://d2l.ai/index.html

 Tensorflow

 Pytorch

 Keras

 Fastai or Lightning

 Logger for deep learning

 https://github.com/wandb/client

40

https://www.deeplearning.ai/ai-notes/optimization/index.html
https://www.deeplearning.ai/ai-notes/initialization/index.html
http://playground.tensorflow.org/
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://github.com/pytorch/pytorch
https://keras.io/
https://www.pytorchlightning.ai/index.html
https://github.com/fastai/fastai
https://www.pytorchlightning.ai/index.html
https://github.com/wandb/client

Logical Computations with Neurons

 Let’s build a few ANNs that perform various logical computations, assuming

that a neuron is activated when at least two of its inputs are active

 You can imagine how these networks can be combined to compute complex logical

expressions

41

Faster Optimizers

 All the optimization techniques discussed so far only rely on the first-order

partial derivatives (Jacobians). The optimization literature also contains

algorithms based on the second-order partial derivatives

 Since DNNs typically have tens of thousands of parameters, the second order

optimization algorithms often don’t even fit in memory, and even when they do,

computing the Hessians is just too slow

42

Other regularization techniques - Monte Carlo (MC) Dropout

 Established a profound connection between dropout networks and approximate

Bayesian inference, giving dropout a solid mathematical justification

 It may boost the performance of any trained dropout model, without having to retrain it or

even modify it at all. It just take the average of dropout preictions!

 MC Dropout is a fantastic technique that boosts dropout models and provides

better uncertainty estimates. And of course, since it is just regular dropout

during training, it also acts like a regularizer

 The number of Monte Carlo samples you is a hyperparameter you can tweak.

The higher it is, the more accurate the predictions and their uncertainty

estimates will be. Try to find the right trade-off between latency and accuracy,

depending on your application

43

https://arxiv.org/pdf/1506.02142.pdf

Nonsaturating Activation Functions

 Scaled ELU (SELU) activation function ensures certain network will be self-

normalized: the output of each layer tend to preserve a mean of 0 and standard

deviation of 1 during training

 The input features must be standardized (mean 0 and standard deviation 1)

 Every hidden layer’s weights must be initialized with LeCun normal initialization

 The network’s architecture must be sequential and contains only dense layer

 In general, the performance of SELU and ELU and will performs better than

traditional activation function

 If the speed is the first priority, try using leaky ReLU and its variants

 If you want to regularize a self-normalizing network based on the SELU activation function (as

discussed later), you should use alpha dropout: this is a variant of dropout that preserves the mean

and standard deviation of its inputs

44

https://mlfromscratch.com/activation-functions-explained/
https://proceedings.neurips.cc/paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf

Gradient clipping

 Another popular technique to mitigate the exploding gradients problem is to

clip the gradients during backpropagation so that they never exceed some

threshold

 If you observe that the gradients explode during training (you can track the size of the

gradients using TensorBoard), you may want to try both clipping by value and clipping by

norm, with different thresholds, and see which option performs best on the validation set

 The difference between clipping by value and by norm

 [0.9, 100.0] will clip to [0.9, 1.0] or [0.00899964, 0.9999595]

45

46

47
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/overfit-v6.pdf

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/overfit-v6.pdf

Bias-variance trade-off

48

https://jason-chen-1992.weebly.com/home/-bias-variance-tradeoff

Data Mismatch

 Sometimes the data probably won’t be perfectly representative of the data that

will be used in production

 The most important rule to remember is that the validation set and the test set must be as

representative as possible of the data you expect to use in production, so they should be

composed exclusively of representative pictures: you can shuffle them and put half in the

validation set and half in the test set

49 https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/overfit-v6.pdf

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/overfit-v6.pdf

When to Use Machine/Deep Learning

 To summarize, Machine/Deep Learning is great for:

1. Problems for which existing solutions require a lot of fine-tuning or long lists of rules:

one Machine Learning algorithm can often simplify code and perform better than the

traditional approach

2. Complex problems for which using a traditional approach yields no good solution: the

best Machine Learning techniques can perhaps find a solution

3. Fluctuating environments: a Machine Learning system can adapt to new data

4. Getting insights about complex problems and large amounts of data

50

How to choose the network architectures?

 Number of Hidden Layers

 You can ramp up the number of hidden layers until you start overfitting the training set

 Number of Neurons per Hidden Layer

 The number of neurons in the input and output layers is determined by the type of input

and output your task requires

 For the hidden layers, using the same number of neurons in all hidden layers so that there

is only one hyperparameter to tune

 Another common practice to size them to form a pyramid, with fewer and fewer neurons at

each layer—the rationale being that many low level features can coalesce into far fewer

high-level features

 It’s simpler and more efficient to pick a model with more layers and neurons

than you need, then use regularization techniques to prevent it from overfitting

51

How to choose the hyperparameters?

 Learning rate

 Find optimal learning rate empirically or use learning rate scheduling

 Number of iterations

 Just use enough iterations and use early stopping

 Batch size

 The main benefit of using large batch sizes is that hardware accelerators like GPUs can

process them efficiently

 Activation function

 In general, the variants of ReLU activation function will be a good default for all hidden

layers. For the output layer, it really depends on your task

52

Architecture

53

Hyperparameters

54

